Full-Dimensional Quantum Dynamics of SiO in Collision with H2.

نویسندگان

  • Benhui Yang
  • P Zhang
  • Chen Qu
  • X H Wang
  • P C Stancil
  • J M Bowman
  • N Balakrishnan
  • B M McLaughlin
  • R C Forrey
چکیده

We report the first full-dimensional potential energy surface (PES) and quantum mechanical close-coupling calculations for scattering of SiO due to H2. The full-dimensional interaction potential surface was computed using the explicitly correlated coupled-cluster (CCSD(T)-F12b) method and fitted using an invariant polynomial approach. Pure rotational quenching cross sections from initial states v1 = 0, j1 = 1-5 of SiO in collision with H2 are calculated for collision energies between 1.0 and 5000 cm-1. State-to-state rotational rate coefficients are calculated at temperatures between 5 and 1000 K. The rotational rate coefficients of SiO with para-H2 (p-H2) are compared with previous approximate results which were obtained using SiO-He PESs or scaled from SiO-He rate coefficients. Rovibrational state-to-state and total quenching cross sections and rate coefficients for initially excited SiO (v1 = 1, j1 = 0 and 1) in collisions with p-H2 (v2 = 0, j2 = 0) and ortho-H2 (o-H2) (v2 = 0, j2 = 1) are also obtained. The application of the current collisional rate coefficients to astrophysics is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2.

We report six-dimensional (6D) potential energy surface (PES) and rovibrational scattering calculations for the CN-H2 collision system. The PES was computed using the high-level ab initio spin-restricted coupled-cluster with single, double, and perturbative triple excitations-F12B method and fitted to an analytic function using an invariant polynomial method in 6D. Quantum close-coupling calcul...

متن کامل

Vibration-vibration and vibration-translation energy transfer in H2-H2 collisions: a critical test of experiment with full-dimensional quantum dynamics.

Quantum scattering calculations of vibration-vibration (VV) and vibration-translation (VT) energy transfer for non-reactive H2-H2 collisions on a full-dimensional potential energy surface are reported for energies ranging from the ultracold to the thermal regime. The efficiency of VV and VT transfer is known to strongly correlate with the energy gap between the initial and final states. In H2(v...

متن کامل

Rotational effects in six-dimensional quantum dynamics for reaction of H2 on Cu„100..

We present results of six-dimensional ~6D! quantum wave-packet calculations for the dissociative adsorption of (n50,j54,m j) H2 on Cu~100!. The potential-energy surface is a fit to points calculated using density-functional theory ~DFT!, with the generalized gradient approximation ~GGA!, and a slab representation for the surface. New aspects of the methodology we use to adapt the wave function ...

متن کامل

A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H+ + H2 --> H2 + H+ exchange reaction.

The H+ + H2 exchange reaction has been studied theoretically by means of a different variety of methods as an exact time independent quantum mechanical, approximate quantum wave packet, statistical quantum, and quasiclassical trajectory approaches. Total and state-to-state reaction probabilities in terms of the collision energy for different values of the total angular momentum obtained with th...

متن کامل

Coupled-states versus close-coupling formulation

A full-dimensional quantum dynamical study of H2+H2 collisions: Coupled-states versus close-coupling formulation Alex Bohr,1 Stephen Paolini,1 Robert C. Forrey,1,a) N. Balakrishnan,2 and P. C. Stancil3 1Department of Physics, Pennsylvania State University, Berks Campus, Reading, Pennsylvania 19610-6009, USA 2Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 122 6  شماره 

صفحات  -

تاریخ انتشار 2016